PENERAPAN METODE GOAL PROGRAMMING UNTUK MENGOPTIMALKAN BEBERAPA TUJUAN PADA PERUSAHAAN DENGAN KENDALA JAM KERJA, PERMINTAAN DAN BAHAN BAKU


JURNAL MATEMATIKA "MANTIK" || Oktober 2016
Volume 02 || Nomor 01 || ISSN: 2527-3159 || E-ISSN: 2527-3167
Penerbit : Program Studi Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Sunan Ampel Surabaya

Penulis  : Fauziyah

PDF

Abstrak

Suatu perusahaan memiliki beberapa tujuan (multi-objective) yang ingin dicapai, seperti memaksimalkan total nilai penjualan, memaksimalkan total produksi dan meminimalkan biaya produksi tanpa hams mengurangi kualitas produk. Tujuan tersebut mengandung aspek yang berbeda sehingga sering tidak sejalan antara satu dengan yang lain. Untuk memberikan solusi optimal yang merupakan titik temu dan beberapa tujuan yang telah ditetapkan, metode yang digunakan dalam penelitian ini adalah goal programming.

Penerapan metode goal programming dilakukan dengan bantuan software LANDO. Hasil perhitungan dengan metode goal programming dapat memaksimumkan total nilai penjualan dan total produksi dengan meminimumkan biaya. Hasil penelitian menunjukkan bahwa tujuan yang telah ditetapkan tercapai secara optimal.

The company has multiple objectives that want to be achieved, which are maximizing selling, maximizing production and minimizing the cost production without reducing the quality of the product. The objective contains different aspects and so often incompatible with each other. To provide an optimal solution with respect to those objectives of some predetermined goals, the applied method that used is goal programming. The goal programming show that it is run by using the LINDO program. The result of the goal programming method can maximize the total selling and total production by minimize cost. The result showed that the define objectives achieved optimally.

Kata Kunci : Goal Programming, Optimasi, Kendala

 

1. Pendahuluan

1.1 Latar Belakang

Matematika merupakan salah satu bagian dari ilmu pengetahuan yang memiliki peranan penting dalam dunia teknologi dan perusahaan. Banyak sekali permasalahan yang dapat dirumuskan (dimodelkan) dan dicari penyelesaiannya melalui perhitungan matematis. Dalam hal ini dosen diwajibkan melakukan Tri Dharma Perguruan Tinggi, sehingga dituntut untuk menerapkan ilmu yang dimiliki sehingga dapat bermanfaat baik pada perusahaan maupun sektor lain sebagai aplikasi dan matematika.

Suatu perusahaan terkadang memiliki beberapa permasalahan yang sulit untuk dipecahkan dengan cara sederhana namun setiap perusahaan menginginkan penyelesaian

yang tepat guna untuk mendapatkan hasil yang optimal tanpa hams coba-coba. Di Indonesia banyak terdapat jenis perusahaan, salah satunya adalah perusahaan industri kertas.

Keunggulan sistem manajemen dan distribusi yang telah diterapkan pada beberapa perusahaan menjadikan suatu perusahaan dapat berkembang pesat seiring dengan kebutuhan konsumen. Namun perekonomian di Indonesia tidak selalu berjalan mulus, sehingga secara tidak langsung mengganggu aktivitas perusahaan.

Berdasarkan Chowdary & Slomp, dalam membuat suatu perencanaan produksi terdapat tiga elemen yang perlu dipertimbangkan, yaitu konsumen, produk dan proses manufaktur Ketiga elemen tersebut merupakan masalah yang sangat kompleks yang hams dihadapi oleh setiap perusahaan industri.

Seluruh sumber daya yang dimiliki hams terkoordinir dengan baik sehingga dalam proses produksinya akan menghasilkan produk yang baik dan optimal. Dalam menghasilkan produk, setiap perusahaan industri menginginkan kebijakan yang dapat menghasilkan keuntungan tanpa mengesampingkan kebijaksanaan lainnya seperti memaksimalkan total produk dengan keterbatasan bahan baku yang dimiliki, memaksimalkan barang produksi tanpa mengesampingkan jumlah permintaan yang ada di pasaran, dan meminimalkan biaya produksi tanpa mengurangi kualitas produksi.

Semua tujuan tersebut diharapkan dapat tercapai secara optimal, namun tidak menutup kemungkinan terpenuhi satu tujuan akan mengabaikan tujuan yang lain. Hal ini sering terjadi mengingat sumber daya yang dimiliki terbatas, sehingga pemenuhan tujuan secara bersama-sama tidak mungkin tercapai.

Berdasarkan latar belakang di atas dan tujuan yang ingin dicapai lebih dari satu (multi-objective) maka metode yang digunakan dalam penulisan ini adalah goal programming. Metode ini tepat digunakan dalam perencanaan produksi karena potensial untuk menyelesaikan aspek-aspek yang bertentangan antara elemen-elemen dalam perencanaan produksi, yaitu konsumen, produksi, dan proses manufaktur.

 

1.2 Rumusan Masalah

Adapun rumusan masalah yang akan dibahas adalah bagaimana membuat model matematika yang fisibel dengan menerapkan metode goal programming berdasarkan permasalahan yang ada untuk dapat memaksimalkan total nilai penjualan (memaksimalkan keuntungan), memaksimalkan total produksi (volum) dan meminimalkan biaya produksi (tanpa mengurangi kualitas produk).

 

1.3 Tujuan Penelitian

Tujuan yang ingin dicapai dalam penelitian ini adalah menyusun model matematika yang fisibel dengan menerapkan metode goal programming berdasarkan

permasalahan yang ada untuk dapat memaksimalkan total nilai penjualan (memaksimalkan keuntungan), memaksimalkan total produksi (volum) dan meminimalkan biaya produksi (tanpa mengurangi kualitas produk).

 

1.4 Manfaat Penelitian

Hasil penelitian ini diharapkan dapat memberikan sumbangan pemikiran dalam perencanaan produksi untuk memaksimalkan total nilai penjualan (memaksimalkan keuntungan), memaksimalkan total produksi (volume) dan meminimalkan biaya produksi dengan menentukan model matematikanya

 

2. Tinjauan Pustaka

2.1 Permasalahan Optimasi Dan Program Linear (Linear Programming)

Masalah optimasi merupakan masalah memaksimumkan atau meminimumkan sebuah besaran tertentu yang disebut tujuan objektif (objective) yang bergantung pada sejumlah berhingga variabel masukan (input variabels). Variabel-variabel ini dapat independen maupun dependent melalui satu atau lebih kendala (constraints). Persoalan optimasi merupakan persoalan mencari nilai numerik terbesar (maksimasi) atau terkecil (minimasi) yang mungkin dari sebuah fungsi dan sejumlah variabel tertentu. Persoalan optimasi tersebut dapat diselesaikan dengan menggunakan program linear.

Program linear merupakan salah satu metode matematika yang berkarakteristik linear untuk menemukan suatu penyelesaian optimal dengan cara memaksimumkan atau meminimumkan fungsi tujuan terhadap susunan kendala [3]. Karakteristik linear yang dimaksud adalah seluruh fungsi model matematika hams berupa kombinasi linear.

Secara umum persoalan program linear

dengan variabel keputusan xl , x2 , x3 ,…,xn

dapat dirumuskan dalam suatu model matematika sebagai berikut :

(a) Memaksimumkan fungsi tujuan

Z =        +c2 x2 + +              + …+ cnxn

=EC xj j=1

 

 

(2)

dengan pembatasnya (fungsi kendala) za      untuk      i = 1,2,3, … , m      dan

xi, x2, …, x„ 0          atau                       xdengan

j=1,2,3,…,n.

(b) Meminimumkan fungsi tujuan

Z = cixi + c2x2 + …+ cixi + …+ cnxn

,Ec.x.

=1

dengan fungsi kendala tauxib, untuk i =

1,2,3, … , m dan xl, x2, ,                0 atau

xi 0, dengan j =1,2,3,…,n .

Keterangan:

xi = Variabel pengambilan keputusan ke

ci = Koefisien fungsi tujuan ke -j.
= Kapasitas kendala ke – i.

au = Koefisien fungsi kendala ke – i untuk variabel keputusan ke -j.

 

2.2 Goal Programming

Metode goal programming merupakan perluasan dari model program linear. Goal programming diperkenalkan oleh Charles dan Cooper pada awal 1960. Teknik ini disempurnakan oleh Ijiri pada pertengahan 1960 dan penjelasan yang lengkap pada beberapa aplikasi dikembangkan oleh Ignizo dan Leen pada 1970.

Karena goal programming merupakan perluasan dari program linear sehingga seluruh asumsi, notasi, formula matematika, prosedur perumusan model dan penyelesaiannya tidak berbeda. Perbedaan utamanya terletak pada struktur dan penggunaan fungsi tujuan. Dalam program linear hanya mengandung satu fungsi tujuan sedangkan dalam goal programming terdapat satu atau beberapa gabungan fungsi tujuan. Hal ini dapat dilakukan dengan mengekspresikan tujuan itu dalam bentuk sebuah kendala (goal constraint). Memasukkan variabel simpangan (deviational variabel) dalam kendala tersebut untuk mencerminkan seberapa jauh tujuan itu

tercapai dan menggabungkan variabel deviasional dalam fungsi tujuan.

 

Tabel 1. Model Matematika Goal Pro rammin

Tipe
fungsi
kendala
pada
program
linear
Model matematika
goal programmingumkan
Variabel deviasio ner yang dimimm
Fi (x)        bi

Fi (x)        bi

Fi (x)= b1

Fi (x) + di – di           = bi

Fi (x)+ di – di = bi
F
i (x) + di – di+ = b1

di di+

d–             +

1 ‘d1

Untuk metode goal programming paling sedikit memiliki tiga komponen yaitu: fungsi tujuan, kendala sasaran dan kendala non­negatif.

 

2.3 Bentuk Umum Model Matematis Metode Goal Programming

Secara umum model matematis metode goal programming dapat dirumuskan sebagai berikut :

Mencari        x = (xi , x2 ,…, )        yang

meminimumkan fungsi tujuan

[jPi[gi(di ,ci)],P2[g2(4,d;)],.4
……….. ,Pk[gk(cik ,ci,)]                                   11 (3)

Fungsi kendala

         al lx1 a12x2       alnxnd+ – (41 = bl

a21x1 a22x2 + …+ a2nxn + L4 2L4 2 = .2

– +

amixi + am2x2 +…+ amnxn + dm – dm = bm

dan xi , di+ dan di                       0 untuk i = 1, 2, …, m

dengan

xi = variabel keputusan ke j.

bi = kapasitas kendala ke – i.

au = parameter fungsi kendala ke – i untuk variabel keputusan ke j.

k = jumlah seluruh tingkat prioritas yang ada pada model.

z =

54

 

variabel keputusan.gk(clk,dk+) = fungsi linear dari variabel‑

Pk = prioritas yang sesuai dengan

gk (c/k ,

 

3. Metode Penelitian

Penelitian ini menggunakan studi kasus pada PT Gangsar Jaya untuk penerapan metode goal programming. PT Gangsar Jaya merupakan salah satu perusahan industri kertas yang ada di Mojokerto. Data yang diambil terkait dengan pemaksimalan keuntungan, pemaksimalan total produksi, dan peminimalan biaya produksi. Untuk menemukan solusi yang optimal dari permasalahan tersebut penulis menggunakan bantuan program komputer yaitu program LINDO. Untuk mencapai tujuan penelitian yang ditetapkan, disusun prosedur penelitian yang dijelaskan pada Gambar 1.

Pen2umnulan data

Mengidentifikasi kendala-kendala pada

Perumusan model matematika dengan
menggunakan metode goal programming

Pennolahan data

S olusi

Kesimnulan dan saran

Gambar 1 Prosedur Penelitian

 

4. Analisi Data Dan Pembahasan

4.1 Hasil Penelitian

PT Gangsar Jaya merupakan anak cabang dari PT Tjiwi Kimia, sehingga proses produksi perusahaan ini hanya mengolah bahan balm yang berasal dari PT Tjiwi Kimia. Produk jadi hasil olahan berupa buku tulis, buku gambar dan tas kertas akan dikirim lagi ke PT Tjiwi Kimia untuk didistribusikan ke konsumen.

Dalam proses produksi setiap jenis barang pada PT Gangsar Jaya perlakuanya berbeda. Untuk produksi buku tulis, lembaran kertas plano dimasukan ke dalam me sin pemotong dan dipotong sesuai ukuran kemudian dirapikan (sorting process) dan diberi sampul (cover). Setelah itu dimasukkan ke dalam mesin penjilidan dan yang terakhir proses pelipatan secara manual oleh manusia.

Untuk produksi buku gambar prosesnya hampir sama, yaitu dari lembaran kertas plano dipotong sesuai ukuran kemudian diberi sampul (cover) dan dilipat secara manual. Setelah itu proses selanjutnya adalah penjilidan dan yang terakhir dirapikan (sorting process). Sedangkan proses produksi pada tas kertas dimulai dari lembaran kertas plano yang dipotong sesuai ukuran kemudian dimasukkan pada mesin pembuatan pola, proses terakhir pelekatan masing-masing bagian dan diberi tali untuk pegangan, sehingga terbentuk tas yang dilakukan secara manual.

Secara keseluruhan data dari proses produksi dan kondisi pada PT Gangsar Jaya disajikan secara singkat melalui tabulasi berikut ini dengan perincian data untuk setiap seratus unit.

 

4.1.1 Jenis Produksi

PT Gangsar Jaya dalam produksinya menghasilkan beberapa jenis produk. Adapun data produk tersebut dijelaskan pada label 2.

 

4.1.2 Data Kebutuhan Jam Kerja

Kapasitas jam kerja setiap harinya 7 jam per me sin dan setelah waktu tersebut semua mesin yang ada sudah tidak beroperasi lagi. PT Gangsar Jaya memiliki dua mesin Pemotong, dua mesin penjilidan, dan dua mesin pembuat pola. Waktu pemakaian tiga jenis mesin PT Gangsar Jayapada saat beroperasi dijelaskan Tabel 3 dan Tabel 4.

Identifikasi masalah
Perumusan tujuan
Pen gamatan Studi pustaka


Tabel 2. Jenis Poduksi PT Gan sar Java

No Produk
1 Buku gambar ukuran
2 Buku tulis
3 Tas kertas

 

Tabel 3. Data Kebutuhan Jam Kerja PT Gan sar Java

No Produk (Tiap
Seratus Unit)
Kebutuhan Jam
Kerja (Jam)
1 Buku gambar 7,16
2 Buku tulis 16,87
3 Tas kertas 10,94

 

Tabel 4. Kebutuhan Waktu Pemakaian Mesin PT Gan sar Java dalam jam

No Produk
(tiap
100
unit)
Mesin
Pemotong
Mesin
Penjffid
Mesin
Pembuat
Pola
1 Buku gambar 0,024 0,096
2 tulisBuku 0,036 0,144
3 Tas kertas 0,048 0,068

 

4.1.3 Kebutuhan Bahan Baku

Kebutuhan bahan baku pada pembuatan produk yang dihasilkan PT Gangsar Jaya untuk setiap harinya dijelaskan pada Tabel 5.

 

Tabel 5. Kebutuhan Bahan Baku PT Gangsar Jaya

No Bahan Baku Jumlah
Bahan
Baku (Kg)
1 Plano      untuk            buku

gambar

3.000
2 Plano untuk buku tulis 3.000
3 Plano untuk tas kertas 3.000

 

Tabel 6. Kapasitas Produksi PT Gangsar Jaya

No Produk K

Kapasitas

Produksi

1 Buku gambar 19.500
2 Buku tulis 16.500
3 Tas kertas 90.000

 

4.1.4 Kapasitas Produksi

Data kapasitas produksi yang diperoleh setiap hari dijelaskan pada Tabel 6.

 

4.1.5 Estimasi Permintaan

Berdasarkan Bari data yang diperoleh, estimasi permintaan setiap hari dijelaskan pada Tabel 7.

 

Tabel 7. Data Estimasi Permintaan PT Gan sar Java

No Produk Estimasi
Permintaan
1 Buku gambar 16.500
2 Buku tulis 12.000
3 Tas kertas 80.000

 

4.1.6 Data Harga Jual dan Biaya Produksi

Harga jual produk PT Gangsar Jaya ke pasaran dan biaya produksi tiap seratus produk dijelaskan pada Tabel 8.

 

Tabel 8. Harga Jual dan Biaya Produksi PT Gangsar Jaya

No Nama
Produk
Harga
Jual (Rp)
Biaya
Produksi(Rp)
1 Bukuar
gamb
450.000 423.000
2 Buku tulis 650.000 582.500
3 Tas kertas ukuran S 600.000 552.500

 

4.1.7 Data Rencana Anggaran

Anggaran merupakan ketetapan perusahaan yang hams dicapai setiap hari. Detail rencana anggaran dijelaskan pada Tabel 9.

 

Tabel 9. Rencana Anggaran PT Gangsar Jaya Setiap Had

No Anggaran Jumlah (Rp)
1 Total nilai penjualan 156.500.000,00
2 Total produksi 108.500
3 Biaya produksi 143.000.000

 

 

4.2 Analisi Data

Disusun model matematika berdasarkan metode goal programming dengan data yang didapat pada Sub bab 4.1

 

4.2.1 Variabel Keputusan

Terdapat tiga variabel keputusan yang digunakan dalam penelitian ini yang dijelaskan pada Tabel 10.

 

Tabel 10. Variabel Keputusan pada ProdukanQ Dihasilkan

No Produk Variabel
Keputusan
1 Buku gambar xi
2 Buku tulis x2
3 Tas kertas x3

 

4.2.2 Fungsi Pencapaian Tujuan dan Model Matematika

Fungsi pencapaian tujuan merupakan sekumpulan fungsi tujuan di setiap kendala, sedangkan model matematika yang dimaksud adalah sekumpulan dari fungsi kendala dan fungsi tujuan yang telah diformulasikan. Capaian dalam penelitian ini adalah mencapai total nilai penjualan yang maksimal, mencapai jumlah produksi yang maksimal dan mencapai anggaran biaya yang tersedia. Adapun fungsi pencapaian dan model matematika tersebut dengan tiga variabel keputusan, 26 variabel deviasional, 13 kendala dan empat prioritas akan dijelaskan pada subbab 4.2.2.1 dan 4.2.2.2.

 

4.2.2.1 Minimize: z=Pi(ai+a2+a3)+P2a4+P3a5+p4a6

.

1 +d6 +4 +4 +4 +d; +40
di+d2+ +d3+ +4 +d5 +d5 +d6

+           +

+

Pd+Pd +Pd+

2 11    3 12  4 13

(4)

 

4.2.2.2 Kendala

Terdapat          tiga       kendala        dalam

permasalahan ini yaitu kendala jam kerja, kendala permintaan dan kendala bahan baku.

7,16 xi +16,87 x2 +10,94 x3 – di+ + di = 3500 0,024x1 – dI + d2 =14;

0,036x2 – dI + d2 =14; 0,048x3 – dI + d2 =14; 0,096x1 -(13 + d3 =14; 0,144x2 -(13 + d3 =14; 0,068x3d4 + d 4 =14; xid5+ + d; =165;

x2 -d6+ + d6 =120;

x3d7+ +d7 = 800;

xi– di’ + d8 = 3.000;

x2 -d9+ + d9 =3.000;

x3 -d10 +d10 =3.000; 450x1 + 650x2 + 600x3 .fi’i+ dii= 156.500.000;

xi + x2 + x3 — di+2 +d12=1.085;

423x1 + 582,5x2 + 552,5x3

d+13 + d13 =143.000.000;

Xi = variabel buku gambar

x2 = variabel buku tulis

x3 = variabel tas kertas

dT = variabel deviasional menampung

penyimpangan nilai di bawah sasaran di = variabel deviasional menampung

penyimpangan nilai di atas sasaran i = 1,2,3, …,13

Nilai             Pi, P2, P3, dan P4       bukan

merupakan nilai parameter tapi hanya menunjukkan bahwa prioritas Pk lebih penting dari pada Pk+i . Dimana Pi merupakan prioritas pertama dengan kendala berupa jam kerja, jumlah permintaan dan bahan baku, P2 merupakan prioritas kedua dengan tujuan mencapai total nilai penjualan, P3merupakan prioritas ketiga dengan tujuan mencapai total produksi, dan yang P4 merupakan prioritas terakhir dengan tujuan tercapainya anggaran yang tersedia.

 

 

4.3.Pembahasan                                                                

Optimal dengan meminimalkan simpangan.

Berdasarkan model matematika yang telah fungsi pencapaian pada kendala sistem dibentuk dari data yang telah didapatkan pada  maupun kendala tujuan. Model matematika PT Gangsar jaya maka akan dicari solusi yang telah diperoleh sudah dalam bentuk kanonik, sehingga dapat langsung diselesaikan dengan program LINDO.

 

Tabel 11 . Solusi Optimal

Prioritas Sasaran Hasil yang
diinginkan
Hasil yang
didapat
Keterangan
I Kendala sistem berupa

a.    Jam kerj a

1)    tenaga kerja langsung 3.500 3.361,52 Tercapai
2)    mesin pemotong 14 13,056 Tercapai
3)      mesin penjilidan 14 13,68 Tercapai
4)    mesin pembuat pola

b. Permintaan

14 13,651 Tercapai
1)    buku gambar

2)    buku tulis

16.500 16.500 Tercapai
3)    tas kertas 12.000 12.000 Tercapai
c. Bahan baku 80.000 80.300 Tercapai
1)    piano untuk buku gambar
2)    piano untuk buku tulis 3.000 3.000 Tercapai
3)      piano untuk tas kertas 3.000 3.000 Tercapai
Total nilai penjualan 3.000 3.000 Tercapai
II Total produksi 156.500.000 156.650.000 Tercapai
III Biaya produksi 108.500 108.800 Tercapai
IV 143.000.000 142.585.000 Tercapai

 

Program LINDO menggunakan prinsip algoritma simplek untuk menghasilkan penyelesaian optimal, dari hasil running menggunakan program tersebut didapat penyelesaian optimal setelah iterasi ke-12 (C1 — Zi 0 didapat setelah iterasi ke-12). Hasil ini sesuai dengan penjelasan dari

Algoritma Simplek, jika CiZi 0 untuk j maka peluang menurunkan nilai Z pada iterasi berikutnya tidak ada dan dikatakan bahwa hasil telah optimal.

Dari perhitungan menggunakan Program LINDO, didapatkan hasil yang dijelaskan pada Tabel 11. Dari Tabel 11 dapat diambil kesimpulan sebagai berikut :

 

Prioritas I :

Pada prioritas pertama target produksi untuk memenuhi permntaan konsumen dan persediaan bahan baku terpenuhi namun untuk jam kerja yang dihasilkan masih dibawah target yang ada. Dari Tabel 11 bahan baku yang dianggarkan , semuanya terpakai untuk

produksi buku tulis, buku gambar dan tas kertas. Produksi barang untuk memenuhi permintaan konsumen jumlahnya berlebih 300 buah pada produksi tas kertas sedangkan produk buku tulis dan buku gambar jumlahnya sama seperti permintaan konsumen.

 

Prioritas II :

Pada prioritas kedua untuk mencapai total nilai penjualan PT Gangsar Jaya telah terpenuhi. Hasil yang didapat dari metode goal programming lebih besar dari pada hasil yang diinginkan, besarnya seleisih antara hasil yang didapat dan hasil yang diinginkan untuk nilai penjualan adalah Rp. 150.000,00 sehingga perusahaan mendapatkan keuntungan yang lebih.

 

Prioritas III :

Pada prioritas ketiga, sasaran untuk mencapai total produksi telah terpenuhi. Kombinasi produk hasil optimasi goal programming memiliki jumlah yang sama dengan estimasi permintaan untuk setiap jenis produknya, kecuali untuk hasil produksi tas kertas yang melebihi permintaan pasar yatu sebesar 300 buah.

 

Prioritas IV :

Pada prioritas yang terakhir, untuk mencapai target anggaran biaya yang tersedia telah terpenuhi. Tidak hanya itu, anggaran biaya produksi yang didapat dengan metode goal programming lebih kecil bila dibandingkan dengan anggaran biaya produksi yang tersedia. Besarnya perbedaan anggaran yang didapat dengan metode goal programming dan hasil yang diinginkan adalah Rp 415.000,00. Hal ini menyebabkan PT Gangsar Jaya dapat mengalokasikan sisa anggaran kebagian lain.

Berdasarkan Tabel 11 dan dari uraian prioritas, dapat diketahui bahwa tujuan yang ingin dicapai PT Gangsar Jaya semua terpenuhi dengan tidak mengabaikan prioritas yang telah ditetapkan. Dalam sehari PT Gangsar Jaya dapat:

1 Memaksimalkan total nilai penjualan sebesar Rp 156.650.000,00

2 Memaksimalkan total produksi sebanyak 108.800 buah.

3 Meminimalkan biaya produksi sebesar Rp 142.585.000,00 dengan kombinasi produk sebagai berikut :

  • buku gambar : 16.500 buah
  • buku tulis : 12.000 buah
  • tas kertas : 80.300 buah

 

Simpulan

Berdasarkan tujuan dan permasalahan yang ada pada PT Gangsar Jaya serta hasil analisa dari penelitian yang dilakukan, maka dapat disimpulkan berikut:

  1. Dengan menggunakan model matematika goal programming, semua sasaran pada masing-masing prioritas terpenuhi namun nilai pencapaian yang telah didapat untuk kapasitas produksi dan jam kerja masih di bawah target yang ada.
  2. Perusahaan hams memproduksi barang pada kondisi yang sedang terjadi adalah sebagai berikut:
  • buku gambar : 16.500 buah
  • buku tulis : 12.000 buah
  • tas kertas : 80.300 buah

Dapat diketahui bahwa PT Gangsar Jaya dalam sehari dapat memaksimalkan total nilai penjualan yaitu sebesar Rp 156.650.000; dapat memaksimalkan total produksi sebanyak 108.800 buah dengan kombinasi produk sama dengan permintaan pasar yang diinginkaan dan dapat meminimalkan biaya produksi sebesar Rp 142.585.000.

 

Referensi

[1] Ravindran, Phillips & Solberg.

Operation Research Principles and Practice. New York. John wiley & Sons (2000)

Sakawa, Masathosi. Fuzzy Sets and Interactive Multiobjective Optimization. New York: Plenum Press (1993) Siswanto. Operation Research Jillid I. Bagor: Erlangga (2006)

Spronk, Jaap. Interactive Multiple Goal Programming. London. Martinus Nijhoff Publishing (1981)

Taha, Hamdy Riset Operasi Suatu Pengantar (Edisi Kelima) Jilid 1. Jakarta: Binaputra Aksara (1996)